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Abstract. Preliminary differential cross-sections of the reactions A(γ, π0π0) and A(γ, π0π+ + π0π−) with
A = 1H, 12C, and natPb are presented. A significant nuclear-mass dependence of the ππ invariant-mass
distribution is found in the π0π0 channel. The dependence is not observed in the π0π± channel. The in-
medium observation in the π0π0 channel is consistent with an in-medium modification of the ππ interaction
in the I = J = 0 channel, changing width and pole position of a ππ resonant state.

PACS. 13.60.Le Meson production – 21.65.+f Nuclear matter

1 Introduction

One of the challenges in nuclear physics is to study the
properties of hadrons embedded in a nuclear many-body
system. This contribution reports on the photoproduction
of correlated pion pairs on nuclei in the scalar-isoscalar
J = I = 0 channel, also known as the σ-meson. In ref. [1]
the σ-meson is identified as the f0(400–1200). The large
natural width in free space of Γ = 400–500MeV [2] makes
it doubtful that this particle is a mesonic qq̄ state. Alter-
natively, the σ-meson is considered to be a resonant state
of two pions [3,4]. In vacuum, the ππ system is mildly
attractive. However, in the nuclear medium the ππ inter-
action strength could increase thereby changing width and
pole position of the resonant state. Experimental data on
correlated ππ pairs in dense nuclear matter can clarify the
nature of the σ-meson.

The first measurement of the in-medium ππ mass was
obtained by a pion-induced experiment by the CHAOS
Collaboration [5]. A rising accumulation of strength at
low π+π− mass was observed with increasing nuclear mass
whereas such an enhancement was not seen in the π+π+-
mass distributions. This effect was interpreted as a signa-
ture for an in-medium modification of the ππ interaction
in the I = J = 0 channel. A similar effect was found by
a pion-induced experiment of the Crystal Ball Collabora-
tion [6] where a nuclear-mass dependence of the π0π0-mass
distribution was observed.

For the interpretation of the pion-induced measure-
ments the strong interaction of the initial-state pion
with the medium has to be taken into account. As a
result, only the surface of the nucleus is probed, leading
to a small effective nuclear density. It was proposed to
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produce in-medium ππ pairs with electromagnetic probes
which illuminate the complete nucleus and lead to a
larger effective density.

In this contribution, measurements of A(γ, π0π0) and
A(γ, π0π±) for A = 1H, 12C, and natPb are presented.
The measurements allow to study the different ππ-isospin
states at average effective densities of 35% (12C) to 65%
(208Pb) [7] of the interior nuclear density of 0.17 fm−3.
Data are presented for an incident-photon energy of Eγ =
400–460MeV. The energy was chosen to be small to min-
imize the effect of final-state interactions of the two pions
with the medium and to prevent background from the
η → 3π0 channel.

2 Experiment and analysis

The experiment was performed at the photon-beam facil-
ity at MAMI-B. Tagged photons [8] were produced with
energies between 200 and 820MeV. The beam intensity
in the energy range of interest, Eγ = 400–460MeV, was
107 s−1 with a photon-energy resolution of about 2MeV.
A series of measurements were carried out using liquid-
hydrogen, carbon, and lead targets.

The angles and energies of the pions were measured
using the TAPS photon spectrometer [9] consisting of 510
hexagonal BaF2 scintillators. The detector is depicted in
fig. 1. The complete setup covered ≈ 40% of the total
solid angle. Photons and charged pions were identified by
exploiting the time-of-flight information of each detector.
A 5mm thick plastic scintillator was placed in front of
each crystal to differentiate between neutral and charged
particles.

Neutral pions were identified by an invariant-mass
analysis of the two decay photons. For the identification of
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Fig. 1. The photon spectrometer TAPS consisting of 510
hexagonal BaF2 scintillators and the 5mm thick plastic scintil-
lators. An event originating from π0 production on a quasi-free
proton is illustrated.

the A(γ, π0π0) reaction, all four final-state photons were
registered in the detector. Charged pions from A(γ, π0π±)
were selected by exploiting the information on the time-
of-flight of the charged pion relative to the one of the
photons of the π0 decay and its deposited energy in the
BaF2 crystals [10]. Since the TAPS detector does not in-
clude a magnetic field, positively charged particles cannot
be discriminated from negatively charged particles.

The dominant reaction mechanism in A(γ, π0π0) and
A(γ, π0π±) channels is the quasi-free production on the
constituent nucleons. Under this assumption, the unde-
tected recoil nucleon was deduced from the incident pho-
ton energy and the momenta of the final-state pions. Its
reconstructed mass distribution was found to be consistent
with Monte Carlo simulations using a quasi-free event gen-
erator. The background of the η → 3π0 production chan-
nel does not contribute, since the incident-photon energy
of Eγ = 400–460 is below the η production threshold.

3 Results and discussion

The measured Mπ0π0-mass distributions for incident-
photon energies of Eγ = 400–460MeV are shown in the
left panel of fig. 2. A strong increase in strength towards
small Mπ0π0 with increasing A is observed. The dotted
curves in fig. 2 indicate phase space distributions. The
experimentally observed peak position for A = 1H (a)
lies higher than the phase space prediction, whereas for
A = 12C (b) the measured mass distribution is compatible
with phase space. For A = natPb (c), most of the observed
strength lies below the peak of the phase space distribu-
tion. The experimentally determined angular distributions
in the A(γ, π0π0) reaction of the π0π0 center-of-mass sys-
tem are found to be isotropic [10] and are compatible with
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Fig. 2. Preliminary differential cross-sections of the reaction
A(γ, π0π0) (left panel) and A(γ, π0π±) (right panel) for in-
cident photons in the energy range of 400–460MeV (solid cir-
cles). Error bars denote statistical uncertainties and the curves
are explained in the text.

J = 0, supporting the conclusion that a significant A-
dependence is found in the ππ I = J = 0 channel in
photon-induced reactions.

The right panel of fig. 2 depicts preliminary results
of the reactions A(γ, π0π±). The data do not show an
A-dependence in shape as was observed in the corre-
sponding Mπ0π0 distributions. For all targets, the data
follow the phase space distributions depicted as dotted
curves, indicating that significant in-medium effects in the
isospin I = 1 channel are not observed. Furthermore, this
observation indicates that the in-medium modification
in the π0π0 channel cannot be explained by final-state
interactions of the individual pions with the medium, as a
similar behaviour for both exit channels would otherwise
be expected.

The solid curves in fig. 2 are predictions by Roca et
al. [4,7]. Here, the meson-meson interaction in the scalar-
isoscalar channel is studied in the framework of a chiral-
unitary approach at finite baryonic density. The model
dynamically generates the σ-resonance, reproducing the
meson-meson phase shifts in vacuum and accounts for the
absorption of the pions in the nucleus. It qualitatively pre-
dicts a mass shift as observed in the π0π0 data. The basic
ingredient driving this shift is the p-wave interaction of
the pion with the baryons in the medium, resulting in
an in-medium modification of the ππ interaction. A sim-
ilar calculation [11] is not able to describe the observed
A-dependence effect in the A(π−, π0π0) data [6], which
might be due to the interaction of the initial-state pion.
Since the σ-resonance does not couple to π0π±, the model
does not show significant change in the shape of the mass
distributions between A = H, A = 12C, and A = natPb,
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Fig. 3. Preliminary ratios between the differential cross-
sections for A = natPb and A = 12C for A(γ, π0π±) (a) and
A(γ, π0π0) (b). The solid curves represent predictions by Roca
et al. [4,7].

which agrees with the experimental observation as shown
in the right panel of fig. 2.

Figure 3 shows the ratio RPb/C between the differen-
tial cross-sections per nucleon for A = natPb and A = 12C
of the reactions A(γ, π0π±) (a) and A(γ, π0π0) (b) up
to Mππ masses of 400MeV. The ratio RPb/C indicates
that about half of the final-state pions is absorped in
the nucleus. The final-state effects of the pions become
larger with increasing mass number A. The experimen-
tally determined ratio RPb/C for the π0π± reaction is
found to be flat, indicating that final-state interactions,
absorption, and rescattering of the individual pions
with the medium do not modify the shape in the mass
distribution significantly. The model of Roca et al. [7]
supports this conclusion as can be observed from the
solid curve. Furthermore, the predictions for RPb/C

agree in magnitude with the experimental data, which
indicates that the final-state effects of pions are properly
taken into account by the calculations. In contrast to
the π0π± data, a significant in-medium shape effect is
observed in the ratio RPb/C for the π0π0 channel as
depicted in fig. 3(b). Since final-state interactions of
neutral and charged pions are expected to be similar,
such large effect cannot be explained by an A-dependence
in the final-state interactions of the individual pions
with the medium. Hence, the observed in-medium ef-
fect points to an A-dependence in the I = J = 0 ππ

interaction. The prediction by Roca et al. [4] with a theo-
retical uncertainty of 10% [7] is depicted as the solid curve
in fig. 3(b).

4 Conclusion

An effect consistent with a significant in-medium modifi-
cation in the A(γ, π0π0) (I = J = 0) channel has been
observed. With increasing A, the strength in these distri-
butions is shifting towards smaller invariant masses. Ear-
lier measurements using pion beams found a similar, but
less pronounced effect. Photon-induced experiments have
the advantage that initial-state interactions are absent and
larger effective densities can be reached which enhance in-
medium effects. The distortion of the ππ-mass distribu-
tion due to final-state interactions of the individual pions
with the constituents of the nucleus has been studied by
measuring the π0π± mass distribution concurrently. A sig-
nificant in-medium effect was not observed. According to
Roca et al. [4], a dominant part of the modification ob-
served in the π0π0-mass distributions can be attributed to
a change of the ππ interaction. The comparison with the
experimental data hints at the nature of the σ-meson as
a ππ-resonance.
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